Казахский национальный университет им. Аль-Фараби Факультет биологии и биотехнологии 4 курс специальности «Биотехнология»

Применение ферментов в кожевенном производстве

Кайырманова Г.К.

Алматы 2023 Кожевенное производство — одна из древнейших отраслей человеческой деятельности.

Для изготовления кож издавна использовались микробиологические процессы, однако долгое время это было исключительно эмпирическое знание.

Только с начала XX века, по мере развития представлений о микробиологических и биохимических механизмов процесса началось внедрение и развитие методов использования ферментов в кожевенной промышленности.

Первый патент на использование ферментов для удаление шерсти получили в 1913 г. Ром и Хаас

Основные типы используемых ферментов

- Протеазы: пепсин (рН опт 2.0), трипсин.
- Другие энзимы: липазы, трансглутаминазы.

Белковый состав кожи: α-кератин (волосы), коллагены, некоторое количество эластина.

Различные комбинации энзимов позволяют удалить неколлагеновые элементы кожи.

Использование ферментов на разных этапах обработки шкур

Этап	Используемые ферменты	Функции ферментов
Консервирование	Не используются	
Вымачивание	Щелочные и панкреатические протеазы	Удаление нефибриллярных белков
Удаление шерсти	Щелочные и нейтральные протеазы	Улучшение сточных вод
Обезжиривание	Липазы и протеазы	Удаление жиров
Отбивка	Трипсин и щелочные протеазы	Смягчение, придание эластичности
Дубление	Не используются	
Утилизация отходов	Трипсин и протеолитические ферменты	Обработка стоков после дубления

2. <u>Вымачивание.</u> Шкуры подвергаются регидратации перед последующими стадиями обработки. Шкуры вымачиваются в растворах с сурфактантами и антимикробными соединениями.

1966г. - начало использования протеолитических и амилолитических энзимов на этой стадии для удаления протеинов между волокнами и как следствие, размягчения и лучшего набухания шкур.

Преимущества: снижение на 45% затраченного времени и 40% снижение добавления сульфидов.

Оптимальной обработкой считается использование протеаза+сурфактант.

3. <u>Обезволашивание</u>. Происходит «расшатывание» волос в волосяном фолликуле. Это происходит при разрушении дисульфидных связей в цистине.

Методы обезволашивания: наиболее распространенный-обработка Na₂S и раствором кислот. Использование энзимов позволяет сократить использование сульфида.

Используются внеклеточные протеазы Bacillus (грубый 2% раствор фермента, т.е., неочищенный, прямо от культуры) (двойной рН оптимум 7,5 и 9,0, t37C), Rhizopus oryzae, Alcaligenes faecalis (рН 8-11, t 30C); также используется диспаза — нейтральная протеиназа бактериального происхождения.

Формы использования ферментов: грубый ферментный препарат, паста, изготовленная из лиофилизированного препарата.

- 4. <u>Отбивка.</u> Шкуры отбивают стальными прутьями. Используются протеазы (трипсин и щелочные протеазы (отбивание в основном проводится в щелочной среде)). Если при отбивке не удалить неколлагеновые протеины, то шкуры получатся ригидными, «цементированными».
- **5.** Обезжиривание. Остаточный жир на шкурах может привести в последующем к неравномерной окраске, проблемам при дубильной стадии обработки. Сначала разрушаются жировые клетки (H₂SO₄, 10% NaCL и несколько дней инкубировать). Затем проводится энзиматическая обработка липазой, которая расщепляет триглицериды, составляющие большую частьобщего состава жира.
- 6. <u>Дубление.</u> При дублении происходит сшивка цепей коллагена функциональные группы коллагена связывают дубильные агенты. Кожа становится устойчивой к действию кислот, но не щелочей. При дублении в основном используют хром.